Data-Dependent Regularization

نویسندگان

  • Adrian Corduneanu
  • Tommi Jaakkola
چکیده

Information regularization is a principle for assigning labels to unlabeled data points in a semi-supervised setting. The broader principle is based on finding labels that minimize the information induced between examples and labels relative to a topology over the examples; any label variation within a small local region of examples ties together the identities of examples and their labels. Such variation should be minimized unless supported directly or indirectly by the available labeled examples. The principle can be cast in terms of Tikhonov style regularization for maximizing likelihood of labeled examples with an information theoretic regularization penalty. We consider two ways of representing the topology over examples, either based on complete knowledge of the marginal density, or by grouping together examples whose labels should be related. We discuss the learning algorithms and sample complexity issues that result from each representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data

Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Least Square Regression Learning with Data Dependent Hypothesis and Coefficient Regularzation

-We study the least square regression with data dependent hypothesis and coefficient regularization algorithms based on general kernel. An explicit expression of the solution of this kernel scheme is derived. Then we provide a sample error with a decay of 1 ( ) O m and estimate the approximation error in terms of some kind of K -functional. Index Terms -Least Square Regressions, Data Dependent ...

متن کامل

Frequency-dependent Regularization in Iterated Learning

Binomial expressions are more regularized—their ordering preferences (e.g. “bread and butter” vs. “butter and bread”) are more extreme—the higher their frequency. Although standard iterated-learning models of language evolution can encode overall regularization biases, the stationary distributions in these standard models do not exhibit a relationship between expression frequency and regulariza...

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

Regularization and Hölder Type Error Estimates for an Initial Inverse Heat Problem with Time-dependent Coefficient

This paper discusses the initial inverse heat problem (backward heat problem) with time-dependent coefficient. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. Two regularization solutions of the backward heat problem will be given by a modified quasi-boundary value method. The Hölder type error estimates between the regularization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005